VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. III-Semester Supplementary Examinations, August-2023 Complex Variables (OE-I)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L	СО	PO
1.	Define analytic function and give an example.	2	1	1	1,12
2.	Define harmonic function and give an example.	2	1	1	1,12
3.	State generalized Cauchy's integral formula.	2	1	2	1,12
4.	Evaluate $\oint_C \frac{e^z}{z^2+1} dz$, where C is the circle $ z = \frac{1}{2}$.	2	2	2	1,2
5.	Define Isolated singularity and removable singularity.	2	1	3	1,12
6.	Define Pole and Essential singularity.	2	1	3	1,12
7.	Define residue. What is the residue if "a" is a pole of order n.	2	1	4	1,12
8.	State Cauchy's residue theorem.	2	1	4	1,12
9.	State sufficient condition for a function to be analytic.	2	1	1	1,12
10.	Find $\oint_C \frac{dz}{(z-a)^n} dz$, $n = 2, 3, 4, \dots$, where C is a closed curve containing the point $z = a$.	2	2	2	1,2
	Part-B $(5 \times 8 = 40 \text{ Marks})$				
11. a)	State and prove necessary condition for a function to be analytic.	4	2	1	1,12
b)	Find the analytic function, whose real part is $e^{-x}(x \sin y - y \cos y)$.	4	3	1	1,12
12. a)	State and prove Cauchy's theorem.	4	2	2	1,12
b)	Evaluate $\oint_C \frac{z}{z^2 - 3z + 2} dz$, where C is $ z - 2 = \frac{1}{2}$ using Cauchy's integral formula.	4	3		1,2
3. a)	Find Taylor's expansion of $f(z) = \frac{2z^3 + 1}{z^2 + z}$ about the point $z = i$.	4	3	3	1,12
b)	Find the nature and location of singularities of the following functions:	4	4	3	1,2
	(i) $\frac{z - \sin z}{z^2}$ (ii) $(z + 1) \sin \frac{1}{z - 2}$				

Code No.: 13154 S (E) N

14. a)	Find the sum of the residues of $f(z) = \frac{\sin z}{z \cos z}$ at its poles inside	4	2	4	1,12
b)	the circle $ z = 2$. Evaluate $\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)^2(z-2)} dz$, where C is the circle $ z = 3$ using	4	3	4	1,12
15. a)	residue theorem. $v^3(1+i)-v^3(1-i)$	4	3	1	1,12
b)	origin.	4	2	2	1,12
16. a)	Find the Laurent's series expansion of $f(z) = \frac{1}{(z-1)(z-2)}$ in the	4	3	3	1,12
b)	region $1 < z < 2$. Evaluate $\oint_C \frac{3z^2 + z + 1}{(z^2 - 1)(z + 3)} dz$, where C is the circle $ z = 2$ using residue theorem.	4	3	4	1,12
17.	Answer any two of the following:				
a	Find the harmonic conjugate function of $e^{-2xy} \sin(x^2 - y^2)$.	4	2	1	1,12
b	-2- ' 1 1 1 1 main or	4	3	2	1,12
	Find the Laurent's expansion of $f(z) = \frac{7z-2}{(z+1)z(z-2)}$ in the region $1 < z + 1 < 3$.	4	3	3	1,12
	1 \ 2 \ T 1 \ 3.			0 1	

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

Li. Divo		
	Blooms Taxonomy Level – 1	20%
1)	Blooms Taxonomy Level – 2	30%
ii)	Blooms Taxonomy Level – 3 & 4	50%
(iii)	BIODIIIS LANDIDING BEVEL	
